C4 Algebra

1. June 2010 qu. 1

Expand $(1+3 x)^{-\frac{5}{3}}$ in ascending powers of x, up to and including the term in x^{3}.
2. June 2010 qu. 3

Express $\frac{x^{2}}{(x-1)^{2}(x-2)}$ in partial fractions.
3. June 2010 qu. 8
(i) Find the quotient and the remainder when $x^{2}-5 x+6$ is divided by $x-1$.
4. Jan 2010 qu. 1

Find the quotient and the remainder when $x^{4}+11 x^{3}+28 x^{2}+3 x+1$ is divided by $x^{2}+5 x+2$.
5. Jan 2010 qu. 5
(i) Expand $(1+x)^{\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^{2}.
(ii) (a) Hence, or otherwise, expand $(8+16 x)^{\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^{2}.
(b) State the set of values of x for which the expansion in part (ii) (a) is valid.
6. Jan 2010 qu. 10
(i) Express $\frac{1}{(3-x)(6-x)}$ in partial fractions.
7. June 2009 qu. 1

Find the quotient and the remainder when $3 x^{4}-x^{3}-3 x^{2}-14 x-8$ is divided by $x^{2}+x+2$.
8. June 2009 qu. 3
(i) Expand $(a+x)^{-2}$ in ascending powers of x up to and including the term in x^{2}.
(ii) When $(1-x)(a+x)^{-2}$ is expanded, the coefficient of x^{2} is 0 . Find the value of a.
9. June 2009 qu. 6

The expression $\frac{4 x}{(x-5)(x-3)^{2}}$ is denoted by $\mathrm{f}(x)$.
(i) Express $\mathrm{f}(x)$ in the form $\frac{A}{x-5}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}}$, where A, B and C are constants.
(ii) Hence find the exact value of $\int_{1}^{2} f(x) d x$.
10. Jan 2009 qu. 1

Simplify $\frac{20-5 x}{6 x^{2}-24 x}$.
11. Jan 2009 qu. 3
(i) Expand $(1+2 x)^{\frac{1}{2}}$ as a series in ascending powers of x, up to and including the term in x^{3}.
(ii) Hence find the expansion of $\frac{(1+2 x)^{\frac{1}{2}}}{(1+x)^{3}}$ as a series in ascending powers of x, up to and including the term in x^{3}.
(iii) State the set of values of x for which the expansion in part (ii) is valid.
12. June 2008 qu. 1
(a) Simplify $\frac{\left(2 x^{2}-7 x-4\right)(x+1)}{\left(3 x^{2}+x-2\right)(x-4)}$.
(b) Find the quotient and remainder when $x^{3}+2 x^{2}-6 x-5$ is divided by $x^{2}+4 x+1$.
13. June 2008 qu. 5
(i) Show that $\sqrt{\frac{1-x}{1+x}} \approx 1-x+\frac{1}{2} x^{2}$, for $|x|<1$.
(ii) By taking $x=\frac{2}{7}$, show that $\sqrt{5} \approx \frac{111}{49}$.
14. June 2008 qu. 8
(i) Given that $\frac{2 t}{(t+1)^{2}}$ can be expressed in the form $\frac{A}{t+1}+\frac{B}{(t+1)^{2}}$, find the values of the constants A and B.
15. Jan 2008 qu. 2
(i) Express $\frac{x}{(x+1)(x+2)}$ in partial fractions.
(ii) Hence find $\int \frac{x}{(x+1)(x+2)} \mathrm{d} x$.
16. Jan 2008 qu. 3

When $x^{4}-2 x^{3}-7 x^{2}+7 x+a$ is divided by $x^{2}+2 x-1$, the quotient is $x^{2}+b x+2$ and the remainder is $c x+7$. Find the values of the constants a, b and c.
17. Jan 2008 qu. 6
(i) Expand $(1+a x)^{-4}$ in ascending powers of x, up to and including the term in x^{2}.
(ii) The coefficients of x and x^{2} in the expansion of $(1+b x)(1+a x)^{-4}$ are 1 and -2 respectively. Given that $a>0$, find the values of a and b.
18. June 2007 qu. 1

The equation of a curve is $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{3 x+1}{(x+2)(x-3)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence find $\mathrm{f}^{\prime}(x)$ and deduce that the gradient of the curve is negative at all points on the curve.
19. June 2007 qu. 1
(i) Expand $(2+x)^{-2}$ in ascending powers of x up to and including the term in x^{3}, and state the set of values of x for which the expansion is valid.
(ii) Hence find the coefficient of x^{3} in the expansion of $\frac{1+x^{2}}{(2+x)^{2}}$.
20. June 2007 qu. 7
(i) Find the quotient and the remainder when $2 x^{3}+3 x^{2}+9 x+12$ is divided by $x^{2}+4$.
(ii) Hence express in the form $\frac{2 x^{3}+3 x^{2}+9 x+12}{x^{2}+4}$ in the form $A x+B+\frac{C x+D}{x^{2}+4}$, where the values of the constants A, B, C and D are to be stated.
(iii) Use the result of part (ii) to find the exact value of $\int_{1}^{3} \frac{2 x^{3}+3 x^{2}+9 x+12}{x^{2}+4} \mathrm{~d} x$.
21. Jan 2007 qu. 1

It is given that $\mathrm{f}(x)=\frac{x^{2}+2 x-24}{x^{2}-4 x}$ for $x \neq 0, x \neq 4$. Express $\mathrm{f}(x)$ in its simplest form.
22. Jan 2007 qu. 5
(i) Expand $(1-3 x)^{-\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^{3}.
(ii) Hence find the coefficient of x^{3} in the expansion of $\left(1-3\left(x+x^{3}\right)\right)^{-\frac{1}{3}}$.
23. Jan 2007 qu. 6
(i) Express $\frac{2 x+1}{(x-3)^{2}}$ in the form $\frac{A}{x-3}+\frac{B}{(x-3)^{2}}$, where A and B are constants.
(ii) Hence find the exact value of $\int_{4}^{10} \frac{2 x+1}{(x-3)^{2}} \mathrm{~d} x$, giving your answer in the form $a+b \ln c$, where a, b and c are integers.
24. June 2006 qu. 2
(i) Expand $(1-3 x)^{-2}$ in ascending powers of x, up to and including the term in x^{2}.
(ii) Find the coefficient of x^{2} in the expansion of $\frac{(1+2 x)^{2}}{(1-3 x)^{2}}$ in ascending powers of x.
25. June 2006 qu. 3
(i) Express $\frac{3-2 x}{x(3-x)}$ in partial fractions.
(ii) Show that $\int_{1}^{2} \frac{3-2 x}{x(3-x)} \mathrm{d} x=0$.
(iii) What does the result of part (ii) indicate about the graph of $y=\frac{3-2 x}{x(3-x)}$ between $x=1$ and $x=2$?
26. Jan 2006 qu. 1

Simplify $\frac{x^{3}-3 x^{2}}{x^{2}-9}$.
27. Jan 2006 qu. 3
(i) Find the quotient and the remainder when $3 x^{3}-2 x^{2}+x+7$ is divided by $x^{2}-2 x+5$.
(ii) Hence, or otherwise, determine the values of the constants a and b such that, when $3 x^{3}-2 x^{2}+a x+b$ is divided by $x^{2}-2 x+5$, there is no remainder.
28. Jan 2006 qu. 7

The expression $\frac{11+8 x}{(2-x)(1+x)^{2}}$ is denoted by $\mathrm{f}(x)$.
(i) Express $\mathrm{f}(x)$ in the form $\frac{A}{2-x}+\frac{B}{1+x}+\frac{C}{(1+x)^{2}}$, where A, B and C are constants.
(ii) Given that $|x|<1$, find the first 3 terms in the expansion of $\mathrm{f}(x)$ in ascending powers of x.
29. June 2005 qu. 1

Find the quotient and the remainder when $x^{4}+3 x^{3}+5 x^{2}+4 x-1$ is divided by $x^{2}+x+1$.
30. June 2005 qu. 8
(i) Given that $\frac{3 x+4}{(1+x)(2+x)^{2}} \equiv \frac{A}{1+x}+\frac{B}{2+x}+\frac{C}{(2+x)^{2}}$ find A, B and C.
(ii) Hence or otherwise expand $\frac{3 x+4}{(1+x)(2+x)^{2}}$ in ascending powers of x, up to and including the term in x^{2}.
(iii) State the set of values of x for which the expansion in part (ii) is valid.

